Marburger Forschende haben die Kommunikation beim Gefäßwachstum entschlüsselt. Das hat die Philipps-Universität am Montag (8. Juli) gemeldet.
um Julian Malchow und Prof. Dr. Christian Helker vom Fachbereich Biologie der Philipps-Universität haben einen neuen Signalweg entdeckt, mit dessen Hilfe Nervenzellen im zentralen Nervensystem mit Blutgefäßen kommunizieren. Diese Kommunikation ist entscheidend für gesundes Gewebe- und Organwachstum. Die Ergebnisse sind auch außerhalb des zentralen Nervensystems interessant für Therapien – nach Herzinfarkten oder bei Krebserkrankungen, bei denen aufzubauende oder zu eliminierende Gefäße entscheidend sind. Die Forschenden berichten über ihre Experimente im Fachmagazin „Science Advances“.
„Die Forschung zeigt, dass Zellen nicht isoliert voneinander zu betrachten sind, sondern in komplexen Netzwerken im Gewebe miteinander kommunizieren“, erläuterte Uni-Vizepräsident Prof. Dr. Gert Bange. „In diesem Fall wird das Wachstum von Blutgefäßen entscheidend von der Kommunikation mit den Nervenzellen geprägt. Ergebnisse und Publikation unterstreichen die herausragende Forschungstätigkeit in unserem universitären Profilbereich ,Geist, Gehirn und Verhalten.“
Wissenschaftlerinnen und Wissenschaftler haben die Vorstellung längst widerlegt, wonach Blutgefäße schlicht Röhren gleichen, die Sauerstoff und Nährstoffe transportieren. Vielmehr sind sie Teil eines umfangreichen Signalnetzwerks im Gewebe und zwischen Organen. In ihren Experimenten haben die Forschenden insbesondere untersucht, wie Nervenzellen den Signalstoff „Apelin“ produzieren, der das Wachstum von Blutgefäßen steuert.
Die Gefäße sprießen aus und wandern dann Richtung Nervenzelle. Damit das gelingt, verfügen die Gefäßzellen über bestimmte Rezeptoren auf ihrer Zellmembran. Diese für Apelin spezifischen Rezeptoren gehören in eine große Rezeptorenklasse namens „G-Protein-gekoppelte Rezeptoren“ (GPCR), die zur erfolgreichsten Klasse medikamentöser Ziele im menschlichen Genom zählen und in der Medizinforschung gut bekannt sind.
Als Modellsystem betrachten die Forschenden Larven des Zebrafischs. „Die eignen sich gut für die Forschung an Organen und Zellen, da sich die Organe schnell entwickeln und viele Entwicklungsschritte dem Menschen ähnlich –
wenn nicht gar identisch – sind“, sagte Helker. Unter dem Laserscanning-Mikroskop können die Forschenden das Wachstum von Gefäßen ins sogenannte Neuralrohr (das sich zum Zentralen Nervensystem entwickelt) en detail beobachten.
„Wir sehen live, wie die Signale in den Zellen eingeschaltet werden und die Zelle auf das Signal reagiert“, berichtete Helker. Dazu müssen die Forschenden bestimmte Bestandteile in den Zellen genetisch und farblich markieren. Sie sprechen von sogenannten „Biosensoren“, die dann rot, grün oder gelb aufleuchten, wann immer ein Signalweg in der Zelle angeschaltet wird. „Wir können am Monitor verfolgen, wie die Gefäße in das Neuralrohr einwandern und welche Signalwege dafür erforderlich sind“, erläuterte Helker.
Mit gentechnischen Methoden können die Biologen die Signalwege manipulieren. Ist beispielsweise ein Rezeptor defekt oder blockiert, so kommt das Wachstum ins Stocken. „Wenn ein Schritt fehlt, geht alles schief“, kommentierte Helker. Für die therapeutische Anwendung bedeutet das, dass sich über das Verständnis der Signalwege des Gefäß-Organ-Wachstums Erkrankungen womöglich beeinflussen lassen.
Ist Gewebe etwa nach einem Herzinfarkt geschädigt, so könnte medikamentös der Neuaufbau unterstützt werden. Im sogenannten „Tissue Engineering“, bei dem Ersatzgewebe oder -organe im Labor gezüchtet werden, wäre das Einleiten und Steuern von Gefäßwachstum ein wichtiger Schritt nach vorn. Andererseits ist es bei der Tumortherapie wünschenswert, die Gefäßbildung zum Tumor zu stören, etwa indem Signalkaskaden unterbunden werden. „Das grundlegende Verständnis der Kommunikation zwischen Gefäßen und Organen gibt uns viele Ansatzpunkte und Ideen für therapeutische Interventionen“, erklärte Helker.
* pm: Philipps-Universität Marburg